On the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source
نویسنده
چکیده
In this paper, we develop an explicit formula allowing to compute the first k moments of the random count of a pattern in a multi-states sequence generated by a Markov source. We derive efficient algorithms allowing to deal both with low or high complexity patterns and either homogeneous or heterogenous Markov models. We then apply these results to the distribution of DNA patterns in genomic sequences where we show that moment-based developments (namely: Edgeworth’s expansion and Gram-Charlier type B series) allow to improve the reliability of common asymptotic approximations like Gaussian or Poisson approximations.
منابع مشابه
ON THE FIRST k MOMENTS OF THE RANDOM COUNT OF A PATTERN IN A MULTISTATE SEQUENCE GENERATED BY A MARKOV SOURCE
In this paper we develop an explicit formula that allows us to compute the first k moments of the random count of a pattern in a multistate sequence generated by aMarkov source. We derive efficient algorithms that allow us to deal with any pattern (low or high complexity) in any Markov model (homogeneous or not). We then apply these results to the distribution of DNA patterns in genomic sequenc...
متن کاملOn Moments of the Concomitants of Classic Record Values and Nonparametric Upper Bounds for the Mean under the Farlie-Gumbel-Morgenstern Model
In a sequence of random variables, record values are observations that exceed or fall below the current extreme value.Now consider a sequence of pairwise random variables {(Xi,Yi), i>=1}, when the experimenter is interested in studying just thesequence of records of the first component, the second component associated with a record value of the first one is termed the concomitant of that ...
متن کاملComparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice
A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملVacation model for Markov machine repair problem with two heterogeneous unreliable servers and threshold recovery
Markov model of multi-component machining system comprising two unreliable heterogeneous servers and mixed type of standby support has been studied. The repair job of broken down machines is done on the basis of bi-level threshold policy for the activation of the servers. The server returns back to render repair job when the pre-specified workload of failed machines is build up. The first (seco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009